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PREFACE

This research report was prepared by Frank C. Liu, Professor of
Mechanical Engineering, The University of Alabama in Huntsville during his
leave at the Air Force Institute of Technology. The objective of this
research is to investigate dynamic response of a tether connected satellite
system due to mass transport along the tether. This problem may have use-
ful application to NASA "Skyhook" program. The author is regretful that
due to limited time and computer programming skills, and the large number
of computer runs required, that numerical results are not available at the

present time. They will be presented in a later report.
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ABSTRACT

\ Two satellites connected by a long flexible tether along the earth
radial direction comprise a stable equilibrium state. This research
investigates the manner in which a third mass transporting from one
satellite to the other disturbs the equilibrium state. A system of four
equations of in-plane motion has been derived based on the assumptions that
the tether remains straight between the masses and of constant length. A
combination of computer subroutines DGEAR and ZANAYT is suggested for the
approximate solution of the system of nonlinear differential equations with
one constraint condition on the variables. Alternatively, a system of
four independent differential equations are derived by eliminating the
Lagrange mu1tip11er.~x
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A I. INTRODUCTION

<
\: Since Colombo (1] developed the concept of connecting a heavy mass to
;i; a satellite by a very long flexible tether in 1974, the subject has stimu-
iig lated the science and engineering community. A recent article by Ivan

. Bekey (2] of the NASA Office of Space Flight gives detailed descriptions of
;23‘ many scientific applications of this idea. Two contractors, Martin

:; Marietta (Denver), Aerospace and Ball Aerospace, have been given respon-
}»; sibility for the design of the "skyhook" project which is scheduled for
:" first flight by NASA in 1987.
‘Ef Preliminary analyses, feasibility studies, and design of a Tethered
{E Satellite System (TSS) were conducted at Marshall Space Flight Center by
’5 Rupp and Lane [3], and Baker, et al [4]. Numerous papers have been

A published in the last decade dealing with the dynamics of deployment and
\ﬂ{ ‘p! retrieving the mass from a space shuttle. Various dynamical models have
isé been developed by many investigators. These models may include one or more
:;j of the following actions:

3 (a) tether mass,

;E ; (b) three-dimensional motion,

';3 (c) longitudinal vibration of the tether,

. (d) transverse vibration of the tether,

-25 (e) rotational motion of masses,

;E (f) offset distance of attachment to C.M. of masses, and

- (g) eccentricity of TSS orbit.

éf Comparisons of the models can be found in the paper by Misra and Modi [5].
:; A formulation of a general dynamical model for TSS by the same authors is
A A given in Reference 6.
_‘." T
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Another aspect of the problem is optimal control of the tension in the
tether for dynamic stability during deployment and retrieving of the mass.

7
See, for example, a paper by Bainum and Kumar [ ]-

The objective of this research concerns with a problem which is quite
different from that described above. The TSS aligned along earth radial
direction is a stable equilibrium state. Consider the requirement that a
third mass must be transported from one sub-satellite to the other along
the tether. The mass transfer operation can be accomplished by free motion
with sufficient initial velocity, or by applying a small thrust. It is
desired to find the dynamic response of the TSS due to the motion of the

transport mass.

The dynamical model to be treated here will include only one of the
factors, (a), mentioned above. Hence, the TSS has three degrees-of-freedom
There is no convenient method for reducing the dynamical model to three
independent variables. Thus, one constraint condition must be induced bet-
ween the four variables used for the formulation of equations of motion.
This constraint condition is that the tether remains straight between
masses and of constant length. Due to inclusion of the mass of the tether,
the system of four second order differential equations will be very

lengthy.

To the author's knowledge, there fs no existing computer subroutine
for the approximate solution of a system of differential equations with a
constraint. A combined computer subroutine for the solution of such
problems is suggested, and will be tested on an example with known solu-
tion. Further, a new system of four independent second order differential

equations has been derived from the original system by eliminating Lagrange
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multiplier. This approach will be verified by direct comparison of solu-

1' tion of both systems.
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II. ANALYSIS
1. FORMULATION OF KINETIC AND POTENTIAL ENERGIES OF THE SATELLITE SYSTEM
The following assumptions have been made for the formulation of the
kinetic and potential energies of the three masses and of the tether con-
necting them.

(a) The motion of the center of mass of the system is undisturbed
by the relative motions of the masses and the tether, i.e., the center of
mass maintains uniform motion in a circular orbit.

(b) The tether is flexible and inextensible. It remains straight
at all times between the transport mass and each of the others.

(c) The transport mass, My is free to move along the tether,
i.e., friction is neglected.

(d) There is no motion normal to the orbital plane.

(e) The main satellite m, and the sub-satellite m, are treated as

1
point masses, i.e., the off-set distances from the attachment point to
center of masses are neglected in the development of the equations of
motion. However, satellite dimension will be partially accounted for
through the distance Ao (See Fig. 1) in the initial and final radii.

. (f) For the same reason, the rotational inertias of all masses
are neglected.

(h) Mass m is much greater than m, and both mass m, and the mass

3

of the tether mt are much smaller than mz.

(i) The driving force applied on my had negligible effect on the
orbital motion of the system.
1.1 Coordinates and Definition of Variables
Figure 1 illustrates a tether connected satellite system. The

left side figure shows a disturbance from the original undisturbed con-

figuration (right). A rotating coordinate system is chosen, with origin at

~
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’; the center of mass of the system, £-axis along the radial direction, and

2 NN n-axis in the direction of the orbital velocity. Let p, be the position
vectors of m; (i =1, 2, 3) retative to the rotating coordinate system.

Sy

‘::::f Denote by p the position vector of ma relative to My and by 8 and y the

::’23 angles of 0, and ¢ with respect to ¢-axis.

. - The tethered satellite has three degrees-of-freedom. Two sets of
..jsz variables, ( By s 8) and ( p,y) are chosen for formulating equations of
§* motion of the system. Hence, the four variables must satisfy the assumed
\ constraint condition that the length of tether is constant. Now, set the
LA
.}.'.jl vectors
oo
ol oy = Py (-cos8i + sinej) (1.1a)
vy - p= p (cosyi- sinyj) = B3 = 8 (1.1b)
o :

o
{:':j and express & and Py in terms of £, and op.

*:lj It follows from assumption (a) that

'~'$ Q Moy ¥ My pp * Mapg + Mp (p, + pgd/28 +ml2 - 0)lpy +p04)/28 =0

",:j This equation gives

Y _ -1

s - pp = (Mg + LM (1 +0) oy + (Mg + 1M )0} (1 + 1M (1 -0)]" (1.2)

, — where

"~y i ) .

;:.. ) m=m +m +m, Mi = mi/m1 (i = 1,2,t)

¥p - - -

Pe M=m/m1, M23=M2+M3=M- 1 g =p/L

P

o After eliminating second and higher order terms of Mt’ one may write
20 )

:“ o = - (Rysp, + M) _ (1.3)
where

3

; Mag = Mp3(l +ap3) M3 = M3(l +aq)

?:E: agy = MM + 1 - Mpo)/2Myn  ag = M (Mo + 1 - M)/2M,
S;: Note that ﬂ23 and M3 are variables through inclusion of p/t = o in the
S5

, expressions for an3 and aqe Due to assumption (h), the quantities which
N .::.

:": ** involve My as much smaller than unity.
e 6
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d‘\~
-
{A,.’
3.
.'{’-EI;—-:?.:; 1.2 Formulation of the Kinetic Energy of the Masses
L L
‘*” The velocity vector of mass m, is
-\_‘-' - - . =
‘j::: Vi SV, ot By ey X gy i=1,2,3 (1.4)
Na Substituting Equation (1.1) and (1.2), results in
m - v, = M, [p,cos8 - o (6 - w )sine) - [M, dcosy - oy - w )siny] i
i, 1 23 ~F2 2 0 3 0 -
1“4". _ ° . ., - . « s _ .
.3:; + {rgu, - Malp,sine + pp (8 - wodcoss] + Mi[3siny + ol¥ - w )cosyl}lj
,.: - A : . : . . » .
:' ¥, = [pz(e - mo)sme - pzcose]l + [romo + pysine + pz(e - wo)cose]g_
o V3 = ¥y *+ [pcosy - (¥ - w )sinyli - [psiny + (¥ - w )cosv]j
- It is helpful to present in tabulated form as in Table 1 the individual
,‘ terms which constitute the kinetic energy.
’ L]
‘\S: More mass parameters are defined in the following for the for-
’\O
:. mulation of the kinetic energy terms in Table 1.
a4 Q for T.: M_ = (mFoy +m + m)/m=M (1 +25,.M./M  (1.5a)
" gt Mg = ImMyy +my + My 23 2323 :
) 2
% for T2 My = (m Ry + mj)/my =1+ M3+ 2a,M, (1.5b)
{: 2
: _ for Tc. Mc = (m1M23M3+m3)/m = M3 (1 + (a3 + 023)M23/M] (1.5¢)
‘
1-. It is helpful to list derivatives of the above mass parameters which will
PN
: be used in formulation of Lagrange's equations.
" M,
g: Py = NI':M23 /% Ma = MM,6 (1.5d)
: N 3Mb
i * TS = MtM3/z Mb = MtM3a (1.5e)
s M
“-l -— C = - -
\;: Ty Mt(l - 1/2M)M3/9. MC = Mt(l - 1/2M)M3o (1.5f)
\'.:
From Table 1 the various velocity terms can be formed by summing
\ i up the products of the elements in the corresponding column and that in the
: Aoy
b i first column. For example.
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Vg = Ty # ATy - (T #Ty) - AT+ AT+ T
The total kinetic enerqgy of the three masses is

T, = Tt m3MbTb - mMc(Tc + Td) - m23a23Te + myaaTe + mT (1.6)
In Table 1 the second column from the right is 2Tm and the last column
gives all terms in the kinetic energy of the tether which will be for-
mulated later.

1.3 Formulation of the Potential Energy of the Masses
Denote Vi = - u/ri, where rs is the distance from center of the

earth to m, and u is the gravitational constant. The potential energy of

masses is then

Vm = mlv1 + mzv2 + m3V3 (1.7)
Let

1 _ -1p
Making use of Equations (1.1), (1.2) and the relationships,

2 _ 2 2,2
Fj 7o (L (2rgepy + 03)/rg]

and taking the binomial expansion,

~1 _ 2 2 2
I "o[l (2r,-p; *+o5)/2ry + 3(r .pi/r )/2]

~Si1—

one obtains the following expressions

1 o

i

2 2 2 2
{1 +(Mypcosy - Wy, o,c088)/r + M,30, (3cos 0 - 1)/2r,

alles

2 2 2 2 2
+ Myo (3cos v - 1)/2r ) - MyM,30,0lcosocosy + cos(o+ v)1/r } (1.8a)

1 1
- = - { 1 +
2 T 0

2 2 2
pycose + 0,(3cos 0 - 1)/2r0} (1.8b)
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Individual terms constituting potential energy are tabulated in
Table 2. Thus, the potential energy of the three masses can be written in
the form
Vn = Wy - MagagaVy + MgV + (V- V)
+ m3Mb(3ve - Vf) - mMc(Vg + V) (1.10)
where the V's in Equation (1.10) are defined in Table 2. The last column
of Table 2 gives terms in the potential energy of the tether which will be
formulated later.
1.4 Formulation of Kinetic Energy of the Tether

It is assumed that the tether remains straight between the masses

as shown in Figure 2. Thus, velocity of points Pl and P, can be written in

2
the forms,
!pl = [51!1 + (2 - p- Sl)!3]/(l - p) 0< Sl <2 -9 (l.lla)
!92 = [52!3 + (p - 52)!2]/p 0« Sp < p (1.11b)

The kinetic energy of the tether can be obtained by integration

2T, = (m,/2) |

=0y v )ds, + [Ply
o PPl -

sV )ds
0 PPy 2

2 2 2
= (mt/3l)[(l - p)Vl + pvz + 2V3 + (1'0)!1‘!3 + 0!20!3] (1-12)

Making use of Table 1, Equation (1.12) yields

2Tt = (mt/ﬁ) [ElTa + GlTb + 63(1’c + Td) +3(1 - M, + Mo)Te

23

- 3(1 - M3 + M30)Tf] +m To (1.13)

t
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E}Z .jE where the coefficients are defined in Appendix A. Note that the bar on top

t. - of M, M3, and M23 in Equation (1.13) and in the expressions for its coef- :

3

5 ficients have been removed to retain only first order terms of M This is :

.
justified through assumption (h).

2 v s e

1.5 Formulation of the Potential Energy of the Tether

The potential energy of the tether may be written in the form

Andad o d o Bk il

wn

= L-p ¢
Ve = ume/) { (1/r) sy + [7 (1/r] ds, } (1.14)
0 1 0 2
where rp and rp are respectively distances of P1 and P2 from the center
1 2
- of the earth, as shown in Figure 2. The position vector of points Pl and
»; P2 on the tether may be expressed in the forms
- r_'pl = [syry + (2 - psy)r3)/(2-p) (1.18a)
rpz = [syry + (o= 5,00, 1/0 (1.14b)
-1
@ Ir =(r o )72 §=1,2 (1.14c)
P; “P; =P
Using the following relationships,
2 _ 2 2
- Py = ot 2pepy t ooy

_ 2
) Tiefy ® To * Lot * Loy * 04-0;
one obtains

21 2
= : {1- (ro'Ei)[sl +5) (& - p- 5] - (rg+03) X
pl 0

“$4r—

2 2 _ 2 2
(e - oo sp )+ sy (8- - s)] + 3(rep)) [sy + 508 - 0= 5 )/2r,

I

aTam ANEEM A% a4 4 ala u

2 2 2
+3rgepy) L2 -0 - 5)) + s (8 - 0 5 )V/2r

- llztsi pi + (2 - p- sl)zog +5 e -o- 51)91.93]}/1»2(2 -o)z
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L—
1

rp- rotl - (r .53)[s tsylem sy)] - (rjagy) Dle- sz)2 +5,(p-5,0]
2

2 2 2 2 2 2
*3rgegy) Dsy + sy00 = sp01/2r  + 3(r .0)) [le - s5) + s,(0 - s,)1/2r,

2 2 2 2 2 2
- Y2 lsy o3 + (p = 5)) 0y *+ 5,00 - 5)085023] /v 0 )
The integrals lead to

2-:1 o1l 1 2 cv(s o
2

1
- 5;2 [e(r orP3) + P(r 8 + (2 - PN(r -0 ]

1 2 R 2 2
+ -;4 [i(ro-93) + p(ro-gz) + (2 - C)(ro 91 ) ]

1 .
+ it (rye030 (rgepp) + (0 =p)(r .0V ]}
0
Substitution of the following into the above equation

2

22 2
o = M + M3 o 2M3M23 2ocos(e -y)

23 “2

2 2 2
By =0, 0 - Zozocos(e -v)

01 = TolMp30,C088 - My ccosy)
Fo*Sp = = rFpcosd
Tor23 = rylpcosy - p,cos0)
results in the terms given in the last column of Table 2. Thus, the poten-

tial energy of the tether is

_1 . )
Ve = My {301 = My + MoV, - 3(1 - My + M)V + 3E\V, - 2(1 + 200V,

+ 36V, - Ve + BV} mV (1.15)
where the V's are defined in Table 2.
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2. LAGRANGE'S EQUATIONS OF THE SYSTEM

It is straightforward to apply Lagrange's method to obtain equations
of mtion in terms of the chosen variables (o,, 8) and (o,y). The
constraint that the length of the tether must be a constant may be
satisfied by introducing a Lagrange multiplier into the formulation.

2.1 Equation of Constraint

From Figure 1, it can be seen that
| o= e3l+l el=2 (2.1)
Making use of Equation (1.3), Equation (2.1) becomes
[(1+ Ryg) gt (1 + MpLLiL + Aydp, + (1 Rl = (2 - 0) (2.2)
The above equation yields

ﬂzp; + (1 + M3)202 - 2M(1 + M3)ozpcos(e -v) - (2 - p)z =0 (2.3)

Direct differentiation of Equation (2.3) leads to

apz Py + apo + aee + aYY =0 (2.4)

where, after second and higher order terms of Mt have been eliminated,

apz = [Mpz - (1 + M3) pcos(9 - v) + Mt(aap2 - acp)]/z (2.5a)

a, = {{(1 + M3)2 - Llo/M + 2/M - (1 + M3)p,cos(o - Y)

2 2
+ (Mt/2£)[Mp2 + (1 + M3)(M3/M)o - (1 + 2M3)oo2

+ 2fagp - P )1} /2 (2.5b)

ay = (1 + M3 + Mtac)ozosin(e -v) (2.5¢)

a, = - (1 + M3 + Mtac)ozosin(a -v) (2.5d)
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In the above expressions the following notations have been used

ag = Mo+ 1 - My

ay = (M3o +1- M3)(1 + M3)/M

ac = (12 + Mo + (1 - MM,5)/M
Note that Equation (2.4) has been divided by a factor 2Mz to obtain
Equation (2.5) which will give the Lagrange multiplier used in the
equations of motion a dimension of force.
2.2 Lagrange's Equations of Motion
Let the kinetic energy and potential energy of the satellite
system respectively be

T=Ta*t T mt Ve

where the terms on the right hand side are given by Equations (1.6), (1.7),
(1.12) and (1.15). Four equations of motion of the satellite system are
obtained from Lagrange equation,

]

-

4 T

dt 2y,

= xai + Qi (2.6)

Q

-%+ 9
QG = Pps Py 8, and y

where a; are given by Equation (2.5) and Qi are generalized forces due to
f&rce applied on ms. Lagrange multiplier A is introduced as a result of
the constraint condition given by Equation (2.4).

2.2.1 Elimination of Nonlinear Terms

Note that the variable p which represents the distance of

m3 from m, varies from &£ to zero during the transfer and is the only
variable which cannot be treated as a first order small quantity. Usually
the variable P9 is replaced by its initial equilibrium length plus a

displacement variable; but since the system equations of motion cannot be

linearized due t0 o, 0, will also be kept as a finite variable. The deri-
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vatives, 02 and p, as well as 8, y and their derivative 8 and y are con-

3
JQL ’ sidered as first order small quantities. All tke second and higher order
ti quantities will be neglected from the equations of motion.
TR 2.2.2 Normalization of Variables
2
:?:2 A1l the mass quantities, m, m,, M, and m, are normalized in
b terms of the outer satellite my and are denoted by their capital letters.
s
e A1l the length variables are normalized in terms of the length of the
f:? tether, 2, as follows:
g pz/z =§ ,p/L =g, and ro/z = R0 (2.6)
L \
- The time derivatives of variables are normalized by the orbital period.
-
e Setting
3.1 _ -
o (u/ro) =uw, and 1 =w t
oy
;3i one may change the time derivatives
o @ oLz, ]
e Qi = w,Q; qj = w,95 (qi =Py P, 8. and v) (2.7)
o~
iﬁj where the prime denotes differentiation with respect to t.
WS
l. l
and To perform the normalization process, the four equations
R obtained by the Lagrange's method for the variables Pos Py 8, and y are
o 2 2 2 2
S i
”Qﬁ divided respectively by mlzmo, m3£wo, mlzwopz, and m3zmop. Thus, all the
‘Zj variables and their coefficients in the equations of motion are dimen-
;3\ sionless.
L
2 2.2.3 Change Variable
A
S It is more meaningful to use B =6 -y to replace vy as a
n dependent variable, while the angle y is used only for the convenience of
.
o forming the energies. As shown in Figure 1, 8 represents the angle between
ié; the vectorso2 and . The initial and final values of B8 are always zero.
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2.2.4 Remark on the Differentiation of Enery Terms
It is important to note that all the coefficients of the
energy terms given in Tables 1 and 2 vary with o. Therefore, in for-
mulating Lagrange equations differentiations must be carried out on energy
terms as well as their coefficients. However, in the coefficient of the

energy terms for the tether all variable mass parameters M, ﬂ23, and M, are

3
replaced by their constant counterpart M, M23, and M3 respectively, since all
tether energies already have a first order coefficient M

(b).

¢ See assumption

2.3 Equations of Motion

Four equations of motion obtained from Lagrange's equations are

presented in the forms

Clls + c12° - [Alla + A13o + A16° + Alss ] = Algx* + Q*pz (2.8a)

o + A, 0' + A

23° * Ay 28’1 = A

C215 + szc - [A216 + A ng* + QS (2.8b)

[ ] " [} [} -
D,,8" + Dy, 8" - [8126 + B0 + B0+ Bl7s] = Bigh* + Q% (2.8¢)
” [ ] [} [ ] -
0216 + 0228 - [8226 + 8240 + ste + 82731 = Bzgx* + Q*B (2.8d)
where
’ A* = A/ 2 * = 2 * = / 2
= mlwon sz = sz/mzwoa Qe = 03 mlu’ong

2 2
Q; = Qp/m3zwo, and Q*B= QY/m39.u°p

Next, rewriting the equation of constraint given by Equations (2.3) and

(2.4) in terms of the non-dimensional variables gives
2 2 2 2 - 2
Mo+ (1+M)o - 2R (1L + M) o6cosd - (1-0) =0 (2.8e)

and

(Ms - (1 + Mjlocoss + M, (a8 - aco)]'é +{[(1 + M3)2 -1l + 1

18
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- M(1 + Mj)scoss + lszt[MchZ 1+ M3)M3<:2 - M1 + 2M)as

+ Mla o - a8)] G/M+ 8 M1 +M, + M Jossing = 0 (2.8F)

3
The solution of the four equations of motion must satisfy the constraint

- equation given by either (2.8e) or (2.8f).

;';«!‘i Note that at the initial equilibrium state, 8 = 8" =3' =o' = 0, and
Equations (2.8c) and (2.8d) both reduce to a single equation.

8" + 3 =0 (2.9)
This equation represents oscillations of a dumbbell in a circular orbit[sl.
2.3.1 Equations of Motion With Mt =0
.; The system of equations of motion can be simplifed con-

siderably if Mt is set to zero. Equations (2.8) reduces to

§ + Mo

B’ - 3M23 3

M,.8" - M,og" + 2(M236 - M3o)e' + 2M

23 3 3

0 = A*[Ms - (1 + M3)ccoss] + Q; (2.10a)
2

(1 + M3)o" - Ms" + 2 [(1 + M3)o - Msle' - 2(1 + M3)oB' + 3(1 + M3)o + 3M6
2
=a* {[(1 + M) - 1]o + 1 - M1+ My)scoss} M/My +Q% (2.10b)
. (M236 - M3o)(e' + 3) + M3os" - 2M236' + 2M3o'
= A%(1 + M3)osins + Q*e (2.10c)

[(1+ M3)a - Ms](8® + 38 - 38) - (1 + M3)os' + 2M' - 2(1 + M3)o'

= <« A% [(1 + M3)M/M3] §sing + Q*"B (2.10d)

LU R

It is important to find out numerically whether neglecting the contribution

of the tether mass leads to any significant differences.
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; 3. GENERALIZED APPLIED FORCES AND INITIAL CONDITIONS

Two classes of mass transfers are considered in this paper. One class
._ of transfer is that my is given an initial velocity with sufficient magni-
': tude to cross tne orbit. In this case all the generalized forces in

.." Equation (2.8) are zero. The other class of mass transfer is that my is
- - driven by a continuous thrust with sufficient initial magnitude to get
! motion of m, started. The free motion of the transfer mass is treated

‘ first.

‘_. 3.1 Free Motion of M,

\E Motion in this type of transfer depends entirely on initial con-
E.: ditions. Two cases are considered, one is that m, departs from the outer
?‘.\,_ - satellite, m s and the other is that my starts from the inner satellite, m, «
" 3.1.1 Departure From m,

J.\ To derive the necessarily initial value of § , disregard the
‘___: @ off-set distance from center of m at starting point, By From definition
- of center of mass of the system,

- 15 me + (m +me = (m+m) o,(0)

.jv - It gives

;.; . 8y = (Lt My + 12 MI/M ., Mg =M+ M (3.1a)
o Now, let

: 9, =1 - (Al/z) (3.1b)
:; The minimum initial velocity of my to cross the orbit is determined by work
;T:.- and energy principle. It follows

2 12 bz = frl(m2 RS VIR VYT SRR Vol SNy S

o . 0 1 00 1 0

D °

o

o S Yo DL = opg/r ) = Mday + L1+ g /) = 1/,

R
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@ 5 8o= 3 (rym rodey +ulry-u/rg

9 - - .
..........................................

S RIS (3.2)

Substituting Equation (3.1a) and changing to dimensionless form, it gives

X 1 - Y 1
o' < - Y301 -(1+ Myt 3 MM T = - 3 M, + 5 M) Mo (3.3)

]
Qo —
The negative sign shows that the velocity is in the direction of decreasing
o as m, moves toward m, .

3.1.2 Departure From My

The initial position of the three masses gives

1p mi +m o= (m + mt)oz(O)
Hence,

- 1 -
60 = (1 + 5 Mt)/Mmt o, * A2/1 (3.4)

Similarly, applying the work and energy principle,
1.2_1

2 2 -
= 12 rug Ll = oy /e ) = 11+ L1 0y /r ) = 10u/r,

3 2 2
= 2 pzowo (3.5)

Thus, the minimum initial velocity is

as> B {1+ gmam (3.6)
3.2 Forced Motion and Generalized Forces
3.2.1 Forced Motion Departure From my
Consider that the driving force p(t) on m, is directed toward

my, i.e., the force vector is aligned along the negative direction of vec-

tor, p. Therefore, the virtual work fis

)

21




3 ap Sl

-t

re

s sW = p(t).s p= - p(t)sp

N Here, the sumbol "§" denotes variation and it should not be confused with

kﬁ the variable "§".
'&3 Thus, the generalized forces in Equation (2.8) are

- 2

O; z - p(t)/m32w0 = - p*(t) (3.7)
"':.. = * = % = :
e ;2 Qe QB 0 '
The initital magnitude of p(t) must be sufficnent to overcome the dif- i

E:: ference of centripetal and gravity forces. This gives i
..\-‘ .
“a 2 2 2 !
) - ) -

™ Pnin(0) = mylriwy - u/ry) = myto (1 - 8,) 1
7. Substitution of Equation (3.la) leads to

EN

R . ] 1 (3.8)

“w
‘ (}5 3.2.2 Forced Motion Departure From m,

-i: Again, the driving force is considerd to be in the direction

J.\

oD toward the end point, m,. The virtual work is

sW = p(t).ss) = p(t)s | o) - oy (3.9)
;; Making use of the constraint condition given by Equation (2.1), yields

-,

SW = p(t)s(e - p) = - p(t)sp
Results indentical to Equation (3.7) are obtained. The minimum magnitude

of p(t) to get the motion of m, started is

COREH, VEER

(4
ata

2 2
Pnin(0) = mylu/ry - rywy)

o

) 2
= m [(1 S AT (1 -Dzo/ro)]u/r‘o

O e a e
A

"‘-n.

55.&1“A~“ .:..

L ]

2
= 3myw P20

S
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N ?
:j s Thus,
ad .
Y pr . (0) = 3(L+ 5 MM (3.10) :
: 3.2.3 The Minimum Energy Expense For Transfer Operation ‘
" The first phase of transfer motion is to drive my across the '
i system orbit and the second phase is a braking action which reduces velo- 3
f‘ = city of ma to zero when it reaches the end. If the velocity of my at the *
instant it passes the orbit is zero, the required energy has minimum _‘
N magnitude which is the sum of the kinetic energy given by Equation (3.2) J
\; and (3.5). That is
% Epin = AMylaag) LM + 3 M) + (L + 3 M) 1My (3.11)
:,:- 3.2.4 Generalized Force Due To Air Drag
.,5 Since the transfer operation is accomplished in less than one
i-. orbit, air drag has no significant influence on the motion of the system.
:_;‘: @ However, it can easily be included. Consider that the drag force acts on
3,‘ the inner satellite alone since it is much closer to earth atmosphere if a
L very long tether is used. Let the drag force
) 2
Fo = cdAv, (3.12)
.;: where
_ A = effective area of m,
? d = air density at altitude r
%9 ¢ = drag coefficient
2
\; Vy 2 T+ T+ T, (see Table 1)
.':2 Then the virtual work is
» 6W = - Fp,80

23
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v e and results in =

:.' ) * 2 - * - ' ':;
} Q*y pjlR, + 2 (1 - 8")] (3.13) -

)

; where p; = CcdA /m. Note that the air is treated non-rotating. 4

j

3.2.5 Summary of Initital Conditions and Generalized Forces

W To summarize the initital conditions of the variables and the
- )
- generalized forces of all cases treated, Table 3 is presented. i
TABLE 3 Summary of Initial Conditions and Generalized Forces
A
J FREE TRANSFER POWERED TRANSFER
i Depart from my Depart from m, Depart from m Depart from My
[ ]
- 50. 850
] ]
— 60,80,80 0 0 0 0
! 1 1
N 8, (LeMgr ToMO/M o (1 + oMM (1eMy + oMM (1 + oMM
N y % 1-2a,/s 8,78 1 -4/ by/%
' - 1
(1 '[7 (co)min 3(M2+/2Mt)/Mmt 31+ LQMt)/Mmt none none
p A*(0) 0 0 0 0
)
1S *
. p min(0) none none none none
- Q*(t) 0 0 0 0
4
-~ Q*(t) 0 0 -p*(t) -p*(t)
o ) ' ] 1 )
N QF(t) -pplR,*28(1-8')]  -pplR +28(1-6")] -pplR,*26(1-0")]  -pplR +26(1-8")]
) Q3(t) 0 0 0 0
A 3
Cal N
» 3.3 Reversed Position of the Satellite System .
Formulation has been based on a configuration that the main [3
i satellite m, is moving outside the system orbit. If the two tether con- -
.:‘ -9
o nected satellites interchange their positions, referred to as the reversed -]
- 4
! ey system, equations of motion can be applied without changes. One simply
d e
.
Y.
2
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refers m be the mass of the outside satellite. The two systems have dif-

ferent values for the mass ratios; the reversed system has M2>>1 and M3<<1

while the regular system has M2<<1 and M3<<w2.
3.4 Initial Value of A*
To show that A*(0) = 0, one may use equations of motion for zero

tether mass given by Ffquation (2.10). At an initital equilibrium state:

8" = eo =0,8"=8=0, §" =g¢*' =0, the third and fourth equations are

0

satisfied for any value of A*(0) = 0. Now, setting the rest of initial

LI LI = = * = i i
values, eo Bo 0, %, 1 and 60 (1 + M3)/M and A*(0) = 0 in the first
and second equations and solving for 6; and o;, yields

" _ " _
60 = 3(1 + M3)/M and o9 3
This result satisfies the vector equation,
p,(0) = 0,(0) + (0)
- 2 3 - 2-
= 2w [- 3(1 + Mg)/M + 311 = 3(M,/Mew i

It has been proved that the assumption A*(0) = 0 is correct. The inclusion

of m, will change the magnitude of 6; and o; but not the value rA*(0).
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4. NUMERICAL METHODS OF SOLUTION
An approximate solution of Equation (2.8), the equations of motion,
cannot be found directly by any existing computer integration subroutine
due to the constraint condition on the variables. The author has been
unsuccessful in seeking a special computer program for solution of a system
of differential equations with constraints. A program which combines an
integration subroutine and a subroutine for the determination of zeros of
analytical functions has been suggested.
4.1 Integration by Combined Subroutines
The commonly used subroutine "DGEAR" is a differential equation
solver which finds approximations to the solution of a system of first
order ordinary differential equations of the form yﬁ = fN (t, y) with ini-
tial conditions. The basic methods used for the solution are of implicit
linear multistep type. The user may use either the implicit Adams methods
(up to order twelve), or the backward differentiation formula methods (up
to order five), also called Gear's stiff methods. See Appendix C.
4.1.1 Transformation of Equations of Motion to First Order System
To convert the system of equations given by Equations (2.8)

into a first order system, the variables are redefined as follows:

¥y =8 yp =y =8 (4.1a)
y3 =0 Yq *° yé =g' (4.1b)
Yg = © Y * yé =9' (4.1c)
y; =8 yg = y; = 8' (4.1d)

Thus, Equation (2.8) can be rewritten in the form

-----------
-
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Cia¥a *Crava =AYy * Apa¥3 ¥ Ag¥e * Ag¥g * At + 0%
Co1¥a * Coo¥aq = Ayyy * Apg¥3 ¥ Ayg¥g + Aygyg * Apgd™ + O
Di1¥6 * Dip¥g = Byp¥p + Byaygt Bioyg * Bygyyt Bigh* + Q%
Dy1¥6 * Dpp¥g = Bpp¥p + Bpa¥at Bys¥g + Byypyyt Bpgh* + 0%

where all the coefficients are defined in Appendix B.

equation becomes

(4.2a)

(4.2b)

(4.2¢)

(4.2d)

The constraint

2 2 _ 22 _ o 2
gly) = M v+ (1 + M3) y3 - 2M(1 + My)y yscosy,- (1 - y3) =0 (4.2e)

Solving for y.) , y, from Equations (4.2a) and (4.2b) and y}. , y, from
2 4 6 8

(4.2¢c) and (4.2d), results in

and four more equations from Equation (4.1},

where the coefficients are defined as follows:

D, =D

2 4 °

fai

Fai

fai

foi

f

f

At e N Y. P

N e

yn = yn+l

8i ~

61 =

C11%22 - C12lars
= oM - Croho
Uit - St
= 4 % 0
= DypByi - D128y
Dy18p5 = D181
= g =0
22002 - €129
= 00 - 0%
27
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n=2,4,6,38

"
o

D

11022 = 012021

6, 8, 9

e
1]

1, 3, 6, 8

G =% - 09,

D

*
8 1loY D

OO
*
]

*
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(4.3a)

(4.3b)

(4.3%)

(4.3d)

(4.3e)

(4.3f)

(4.39)

(4.3n)

-y,



4.1.2 Integration Procedure and Subroutine-ZANLYT
With the initial conditions yn(O) for n = 1 through 8, Q*(0)
and A*(0) given in Table 3, yn(rl) can be obtained by using integration
subroutine-DGEAR provided that x*(rl) is known. Let

X3+1(rl) = X;(rl) + AAE(II) j=1,2.., k (a)

and rewrite Equation (4.3) in the form

[} - .

_Ynj (Tl) - fn(le ynj(tl)’ x*(Tl)) (b)
Now, the above equation is integrated for j = 1,2,:..", k by using DGEAR to
obtain ynl(rl),..., ynk(rl). Substituting these in the constraint
equation, Equation (4.2e), yields

95 (¥ps(ty)) = R i=1,2,..,k (c)

where Rj denotes the residual of fucntion g(yn(rl)) from zero.
Subroutine "ZANLYT" is a program for finding zeroes of an
analytical function. It is expected that ZANLYT will determine x*(rl) such
that as to make the residual approximately equal to zero.
Finally, A*(tl) is used to integrate Equation (4.3) one more
time to obtain yn(rl). This procedure completes one integration step and
is ready to move forward to T, and repeat program loop.

' There are questions concerning the magnitude of k, the first
guess of AI(rl), and magnitude of Ak;(rl) to be resolved. Note that A* does
not appear in Equation (4.5) explicitly, and nor there exists an equation
governing A*. More detailed study of ZANLYT is required to answer these
questions.

4.2 Elimination of the Lagrange Multiplier

Two possible approaches for the elimination of the Lagrange

multiplier have been attemped. One is to solve the constraint equation for
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one of the variables in terms of the other three and hence reduce the

system to three independent variables. Unfortunately, the resulting

expressions are so complex as to make an analytical formulation of the

equations of motion unpractical. The other approach is to eliminate A*

directly from any two equations of the system of four equations; and hence

three independent equaticns without A* can be formed. A fourth second

order differential equation is obtained by differentiation of the

constraint equation twice. Expressing the equation so obtained in a simi-

lar form as Equation (4.2), one has

+ (4.4a)

Ciyyy *+ Cypyp =

’ | I i
Coryp * Coovg = & Apyyy + Qy (4.4p)

21 4

i\ ] A [ -
Dy1Yg * Dpp¥g = T Byy¥y + Qcy (4.4c)
] " -
021y6 + 522y8 =z EZiy + ch (4.44d)
where
1
Qab = R0%0, ~ Mo%0 o Qea = A% - BT s Qegm My Q% t Mays0
and the coefficients are defined in Appendix B. Note that the above
equations are formed with the use of: *

2

(4.43) = -—z (4.2e)
dr

{4.4b) A29(4.2a) - A19(4.2b)
(4.4¢) = A19(4.2c) - 819(4.2a)

(4.44d)

My, (4.2¢) + Moy (4.24)

A AmE . L & A A oA mBam i At ML

Since second and higher order terms were neglected from the original



equations of motion, they are not included in Equation (4.4a).
Now, Equation (4.4) can readily be reduced to the first order system,

Voo =
Yn Yo+t n 1, 3,6, 7 {4.5a)

- 3 (£ f oy, + ) =2,4,6, 8 (4.5b)
n

= €185 - €00 = Bg = 0y,0p, - 01,0,

=-C,A f

12725 » =C,,A i=1,3,6,8,9

4i 1172i

? F..=0 i=2,4,5,7

21 4i

F.. =D

61 - D

? :DB -DB 1.:2,4’597’9

ZZBli 12727 '8i 1172i 21714

F.. =T

6i - 'gi 5, 8

O, = - €150, O = 51 %

D) D) -0

06 : DZZQca - 5120cq0 08 = D110, 2194
The above system is referred to as the derived system while Equation (4.3)
is called the original system.
4.3 An Example for I1lustration

An example which has known solution is given here for illustration
and also may be used for programming verification. A pendulum of mass m
and length L with small initial angle ¥ and zero initial velocity has the
linear solution 8 = eoc051 = Jg/Lt. If rectangular coordinates x = Lsind
and y = Lcosé are used for the Lagrange formulation, one obtains the

equations of motion




...........................................

s ¢ .
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[

my - mg = Ay (4.6b) ]

with a constraint equation, j

x2 + _y2 = L2 or xx +yy =0 v4.6c) ;

- Note that Equations (4.6a) and (4.6b) can also be obtained from conditions 2

of equilibrium as shown in Figure 3(a). Settingé¢ = x/L, n=y/L, T =

KRR a
-;0'5 ‘

/g/Lt and A* = x/(mg/L), the above equation become

g% = A% (4.7a)
n" = A*n + 1 (4.79)

2 2
g€ +n =1 org' +nn' =0 (4.7¢)

where prime denotes differentiation with respect to 1.
To form the derived system, one equation is obtained by elimi-
nating A* from Equations (4.7a) and (4.7b) and a second equation by dif-
‘ji ferentiating (4.7c). Thus,

ng" - gn" = - ¢ (4.8a)

2 2
EE® = mn" = - (€' + ') (4.8b)

If a linearized pendulum is treated, the term on the righthand side of
— Equation (4.8b) can be neglected. Solving for £" and n" from the above

equations results in

l2 [ ] 2

g" =-gn -‘£(£ +n') (4.9a)
2 ,2 Y :
n* =g -nfg' +n ) (4.9b) 5
It can be shown by direct substitution that the following ;
b
£ = sing = eocosr :
2 bl
n = cose =1 - li(s cost) N\
* = + 21 -1 Y int) :
$4i A% = - cos® (eosinr) z - - ,Q(SOCOSt + (e°s1nr) ] N
. “
N
:
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is an approximation to the original system, Equation (4.7) and the derived

.
ek ML Bl MR AL P ok & s A s e et ol

system, Equation (4.9). Note that A* is obtained from condition of

- equilibrium as shown in Figure 3(b).

.::: - __0_ X ——O-:— X

) .- xe F = LA = tension 5

N F F

:",\ ! my

= 1

= mx )
\ y y 3 .2

3 mg m.o mL8 ‘
> ]
- mg

N T

bl (a) Forces in xy-coordinates (b) Forces in r B-coordinates g
o Figure 3 Equilibrium of Forces :
:::1 :
1'. y
H @ i
R ]
o This example serves the following objectives: ]
i: (1) 1If a computer program is desinged to solve the original system, i

e L

2 the example can be used as a test case to verify the program. !
-~ !
) (2) This example illustrates that the proposed procedure for elimina-
2 tion of the Lagrange multiplier is a valid approach for a simple
F =

. pendulum.

S 4.4 Numerical Verification

‘-
SE To verify that the program can find approximate solutions of a system

)
[EETE

differential equations with a constraint or that the derived svstem can
truly represent the physical system, one should carry out numerical com-
putation of the example given and compare with the known solution. The

s first order systems of differential equations are respectively:

32
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(1) the original system

¢ _ " o
.Yl'.Yz .Yz"\*yl
¥3 =y Yg =Nyt
2 2
gly) =y, *+y3-1=0

(2) the derived system

«<
~N
~«
N
|
]
<
—
<
(98]
]
<
NN
+
<
PN
<
—

<
»
-~
Y
1
<
—
'
<
NN
+
<
N
<
w

(3) the physical system

9" + sine

"
o

with initial conditions: 6(0) = eo and 6'(0) = 0,

(4.10)

(4.11)

(4.12)

for small oscillations, Equation (4.12) is replaced by an approximately

nonlinear differential equation.
3
8" +08' -¢co =0 (c = 1/6)

which has known approximate solution,

1 2 2
= + -
8 = 8 coswt 32ceo(coswr cosdwt) + 0(c )
where

- .2
w =1 - geo 60 <« 1

(4.13)

(4.14)

Equation (4.14) is sufficient to represent the exact solution of a simple

pendulum for small oscillations.

Now, from solutions of Equations (4.10) and (4.11) compute

8(t) = tan'l[yl(r)/y3(t)]

and compare them with Equation (4.14).
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4.5 Parametric Study

The satellite system has three mass parameters, M2' M3, and Mt’
and one length ratio R° and their numerical ranges may be given as follows:
Mass of sub-satellite /mass of main-satellite: 1/20 to 1/5
Transfer mass/mass of sub-satellite: 1/20 to 1/5
Mass of tether = transfer mass
Radius of satellite orbit/length of tether: 25 to 100
One additional parameter is the magnitude of initital velocity of the
transfer mass for free transfer or the magnitude of the driving force for
powered transfer.
Four cases are to be treated: namely free or powered transfer for
both inward and outward transfers. This number is doubled if both regular

and reversed satellite systems are treated. If three values (high, medium,

and low) are taken for each parameter, this gives 8(34) = 648 computer runs.

4.6 Computer Print-out and Computer Time Control
The amplitude of 8(t) and 8(t) are essential to the study of sta-
bility of the satellite system during mass transfer operations: o(t) and
o'(t) give respectively the poisiton and velocity of the transport mass.
These four variables are required to be ploted versus non-dimensional time
Te
The integration variable for the first order differential
equations is the non-dimensional time t, t = 2m constitutes one orbital
revolution. One may stop the computation when one of the following is
reached:
(1) Te 2 expected value for transfer operation,
(2) | o' (1) | s e, where ¢ is some small positive value, and

(3) af(1)

WA

Az/l when departure from m, or

A

o(tr) =1 - A1/%, when departure from m
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~ IV. CONCLUSIONS AND RECOMMENDATIONS

L ;
;i Conclusions ;
) \
-] A dynamical formulation of the equations of motion of a TSS with mass :
ax transport along the tether has been presented. Four second order differen- E
EE tial equations are obtained directly by the Lagrange method with one

{i: constraint condition on the variables. A system of four independent second

\;_ order differential equations are derived from the first by eliminating the ?
*Ej Lagrange multiplier among the four equations. The fourth equation is f
'?E obtained by differentiating the constraint equation twice. It is desired )
= to obtain computer solutions of both systems to verify the validity of the 1
i; derived system. i
& There are four cases for mass tranfer which are departures from the j

‘,; tZD inner and outer sub-satellites and free and forced motions for each case.

ES Initial conditions for all cases are presented in Table 3. To cover whole i
i& ranges of various combinations of parameters, a minimum of 648 computer :
= runs are required, and many additional runs may be needed when critical

_gé state of equilibrium arises. Thus, systematic studies and records keeping

i? for such a large volume data becomes a major problem.

‘jé The system of equations of motion can be reduced to very simple forms

gi if the tether mass is disregarded. 1t is important to find out how signi-

:? ficant is the contribution of tether mass. No conclusions can be drawn on

how each parameter affects the stability of the TSS until numerical

e

investigations are completed.

'y
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2
L 2k
Recommendations:

t' The items (a) through (g) given in the Introduction may be included in
Eijl; a dynamical model one at a time so that contribution by each can be eva-
\ luated. If two or more items are treated simultaneously, analytical for-
- mulation of equations of motion becomes unpractical.
S*Q A papertg] which will appear in the Journal of Applied Mechanics
Wy

.-:;Z suggests that a dynamical system with constraints may be formulated without
0

o using a Lagrange multiplier. This new approach may provide another means of
:Z:ZZ verification.
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APPENDIX A DEFINITION OF NOTATION USED IN TABLES 1 AND 2

Notations related to kinetic energy of the tether in Table 1 are
results of Equation (1.12) and related to potential energy of the tether in
Table 2 are obtained from Equation (1.14). Definition of these notations
are presented as follows:

E; = 2 {1 - M23(1 - M23) +[2 + M23(1 - M23)]o}

+ M, - 2M M

= M + M - ZM M - 2 - (1 + M3 23 3 23)0

Ey = My + Myy M3

Ey = 2 {2 - Myg(l - Myy) + [4 - 3Mya(1 - My3)lo}

3
G, = 21 - My (1 - M)+ M3(1 - M3)o]

G, =1 +M, +M

3 * M3 - MMy,

3
Gy = [2 + Myp(l - M) 08

G5 = M3(1 - M3)o
G6 = [4 - 3M23(1 - M23)]6 1
G7 =3 ({2 - 2M3 (1 - M3) + 3M3(1 - M3)O] %
)
i
{
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A i
.'{q; --_?_-j APPENDIX B  DEFINITION OF COEFFICIENTS OF EQUATIONS OF MOTION

" The coefficients used in the equations of motion, Equation (2.8), are

N defined as follows:

v Ciy = M, + LME Co, = - M + MM

11 7 "a " 6'tl 12 c 6t

- . i} 1

s

- 1

2 Ay = Myt M (E) + E) Ay = 304, + gME))

- 1 _ 1

1.5 ]

,I

o Alg = M - (1 +Mocoss + M (a6 - a.0)

Fh

¥ - ) 1

5 App = - {3MM_ - ZM (9MM,5 - 9(2M - 1)M; + MR+ 3E, + Gy + G, + Gg 1} /M 4
1:\

£ A, = M+ LM [18M. + (5, + G, - G,)/M,]

» 23 b " 6t-3 b B T R ]
‘ 2 . 1 2 . 2

o ) 1

- . 2

Ayg = (M/M3) {T(1 + M3) - 1]o + 1 - M(1 + M;)6coss

3:, 2 2 2 ‘

% + l/th[M § + (1 + MB)M3o - M(1 + 2M3)oo + Z(abc - acs)]}
- Dy, = M8 - M - 1

.~4:T 11 - 0 + 6M (E § + Ezc) 012 = (Mc - 6MtE2)O

- i 1

d _ 1 _ 1

o Dy = = My + MGy /M3)o Bip = 2(My + gMEy)

::.r

R _ 1
:;;. Big = - {2M  + gM (M08 - 3(2 - 1/MIM; - 3(M - 1)R + 2E, + Ggo + 2G, ]}

<,

@ = . - - .
2 ) BIS 3[)11 B17 0 B19 (1 + M3 + Mtac)osme

SRS
o 1

‘. B8 = -2 (MM - -ME /M B = -3

o 22 ( c 6t 2)/ 3 25 3 21

.4
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_ 1
g = M+ gM{[6Mgo - 3(2M - 1)6 + [3(M - Mj)R + 2G; + G36 + 2G51/M4)

- 1
= -3 [M(MCG - M3Mbo) - GMt(G g+ EZG)]/M3

827 ﬁ
. ) . -
[:_: 829 = -(M/M3)(1 + M3+ Mtac)dsms J
B ¥
o S
. = 1
~ ?
. ..
e

.
-

S
e e X

« . wmwyp oo 1 s

. |
. (S
Aa A A

KA &P

1 39




]
)

I LI

~
Yy
LS
PN

l‘.

o+

Equation (4.4) is derived from Equation (4.2). It is straight forward |

to find coefficients of Equation (4.4), as follows:

C11 = Al Cop = M3hyg
Co1 = Agl1y = ApgCay C22 = A9l12 = A1gC22
Ro1 = Aaghir - Aghay Ryz = Aaghiz - Aghys
Roe = Paghis = Arotis Rog = Paghig = Alofag
D)y = AgDyy - BigCyy Dyp = AlgDyp - BioCyp
Dyy = MyyDyy + M3y30y Dpp = My D)y *+ M3¥30y
By = - Agh;;  (1=1,3,57)
BZi = Bighy; (i =2, 4,6, 8)

Byy = My 81 + Myy3By Byg = MyqByq + M3¥3B54

Byg = My Byg + M3y3Byg Byy = My Byy + May38y
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‘:‘ i APPENDIX C COMPUTER SUBROUTINE '
I. [IMSL ROUTINE NAME: DGEAR :‘
: PURPOSE: Differential Equation Solver - Variable Order Adams 1
" _ Predictor Corrector Method or Gears Method 5

] = USAGE: Call DGEAR 'J
\ 2 Algorithm )
DGEAR finds approximations to the solution of a system of first order

‘ ordinary differential equations of the form y' = f(x,y) with initial
.: conditions. The basic methods used for the solution are of implicit

1 - Tinear multistep type. There are two classes of such methods availble

_‘ - to the user. The first is the implicit Adams methods (up to order 1
twelve), and the second is the backward differentiation formular (BDF) .4
"‘~ methods (up to order five), also called Gear's stiff methods. In either :
("\ case the implicitness of the basic formula required that an algebraic :a
: system of equations be solved at each step. A variety of corrector :
iteration methods is available for this. ]
o - DGEAR and the associated nuclei are adaptations of a package designed “
}: ¥ _ by A.C. Hindmarsh based on C.\W. Gear's subroutine DIFSUB. ]
x I1. 1ISML ROUTINE NAME: ZANLYT }
.‘ PURPOSE: Zeros of An Analytic Complex Function Using the Muller !
sz Method With Deflation ,
‘ . USAGE: Call ZANLYT
. ::t Algorithm ?
: Muller's method with deflation is used. ‘
%

b

gts .

=

)

w - 41 :

P




a4 AR

N .
RO
,.'. oo

e

R XA

M LA

[ 3
TN
AN

R

L X

¥

LI

LN

A e Tt
RS C R T A

.......

Y REFERENCES

Colombo, G. et al, "Shuttle-Borne "Skyhook": A New Tool For
Low-Orbital-Altitude Research," Smithsonian Institution Astro-Physical
Observatory, September 1974.

Bekey, I., "Tethers Open New Space Options," J. Astronautics &
Aeronautics, April 1983, pp 33-40.

Rupp, C., and Lane, J., "Shuttle-Tethered Satellite System," Journal
Astronautics Science XXVI, January-March 1978,

Baker, W.P., et al,"Tethered Sub-Satellite Study," NASA T™MX 73314,
Marshall Space Flight Center, March 1976.

Misra, A.K., and Modi, V.J., "Deployment and Retrieval of a
Sub-Satellite Connected by A Tether to The Space Shuttle," AIAA/AAS,
Astrondynamics Conference, August 1980, No. 80-1693.

Misra, A.K., and Modi, V.J., "A General Dynamical Model For The Space
Shuttle Based Tethered Sub-Satellite System," AAS 79-103.

Bainum, P.M., and Kumar, V.K., "Optimal Control of the Shuttle-Tethered
Sub-Satellite System," Acta Astronautics, Vol 7, 1980, pp 1333-1384.

Greenwood, D.T., "Principle of Oynamics," Prentice-Hall 1965,
pp 268-269 and pp 438-439.

Singh, R.P., and Likins, P.W., “"Singular Value Decomposition for
Contrained Dynamical Systems," Journal of Applied Mechanics, Received
9 February 1984.

42

) et e e e e e, WS A L T e et s L N AU P .
A R AR R S ‘L'A\'L"L\.L'L-L'k'L‘ PR PR TR N SRR PR PR o —

. e T .
A'Lt‘-"h“\‘;‘jh' _

.’1
R

}
1
x
%
=
X
"
X
y




UNCLASSIFIED

)
".; SECLRITY CLASSIFICATION OF THIS PAGE ‘
" . N “ [
e REPORT DOCUMENTATION PAGE y
fel !
e Sea™ REPLRY SECURITY CLASSIF CATION 1b. RESTRICTIVE MARKINGS :
: oo UNCLASSIFIED 1
28. SEC_RITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT 1
Q! WA Approved for public release - distribution {
o b DECLASS F:CAT.ON DOWNGRADING SCHEDULE unlimited
X NSA
4 PERFCAMING DRGANIZATION REPORT NUMBERI(S) 5. MONITORING ORGANIZATION REPORT NUMBERIS)

AU-AFIT-EN-TR-84-1

e

NAME OF PERFORMING OCRGANIZATION eo. OFFICE SYmMBOL 7a. NAME OF MONITORING ORGANIZATION

School of Engineering A¥?¥7?ﬁ?’

ADORESS 'City. State and ZIP Code! 7. ADDRESS rCity, State and ZIP Code)

Air Force Institute of Technology
aright-Patterson AFB OH 45433

NAME OF FUNDING SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
JQAGANIZATION (1f applicable)

ADCRESS .ty State and ZIP Code! 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

T TLE [nciude security Classification; (JN Dynam1caT rormulation
;f A Tethered Satellite With Mass Transport
PERSCNAL AUTHORIS) Sy’ TEM

frack C, Ly

« TYPE OF AEPORAT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT J

FROM TO 1984 May 25 42

i)

‘6 SUPPLEMENTARY NQOQTATION

MM L. mmma A B 8 A A S A A S e s m B A smsmmn s &t s

CCSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and tdentify by block number)

£ €0 sROUP | suB. GR. Stability of Motion of A Tethered Satellite System due to
Mass Transfer and Methods of Solution of A System of

i Differential Equations with A Constraint Copditian

'9 ABSTRACT Cgntinue o reverse if necessary and identify by block number)

Two satellites connected by a long flexible tether along the earth radial direction
comprise a stable equilibrium state. This research investigates the manner in which

a third mass transporting from one satellite to the other disturb the equilibrium state.
4 system of four equations of in-plane motion has been derived based on the assumptions
*nat tne tether remains straight between the masses and of constant length. A combina-
tisn of computer subroutines DGEAR and ZANAYT is suggested for the approximate solution
f the system of nonlinear differential equations with one constraint condition on the
viriables. Alternately, a system of four independent differential equations are

jerived by eliminating the Lagrange multiplier.

RN
..

.‘, " ’ }. "- "4 ."..

20 5STR BT CN AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

Lron@mma A s _m_ 2 S8 xaMMMATr ¢ A 4 s_c_memm a2 RN Y S tduae .

. C_aSS.F EC UNL:MITED _ SAME AS RPT _ DOTIC USERS ]

v %

- .8 NAME 3F RESPONSIBLE INDIVIDUAL 226 TELEPHONE NUMBER 22¢c. OFFICE SYMBOL

PETER ), TORVIK

.,
>
.

‘Include Area Code)

(513) 255-3069 AFIT/ENY
EDITION OF ' JAN 73 1S OBSOLETE. UNCLASSIFIED

SECURITY CLASSIFICATICN OF THIS PAGE

AN

A s malm L A~ M




- .

7 o y B e e DR
‘n ’ .“ : )

(
(

e S

ATt 2

.‘hc

- la e At oa e s o

~—tm




